C1 Combinations of Resistors

What is the resistance of labelled combination?
C1.1
a) A
b) B
C1.2
a) C
b) D
C1.3
a) E
b) F

Resistivity

Complete the questions in the table:

Length $/ \mathrm{m}$	Wire thickness	Resistivity $/ \Omega$ m	Resistance $/ \Omega$
68	cross sectional area: $2.1 \times 10^{-6} \mathrm{~m}^{2}$	1.5×10^{-8}	C 1.4
C1.5	cross sectional area:		

8/10 C2 Charge Carriers

Data: Magnitude of the charge on an electron $=1.60 \times 10^{-19} \mathrm{C}$
Free electron density of copper $[\mathrm{Cu}]=10^{29} \mathrm{~m}^{-3}$
Free electron density of germanium [Ge] $=10^{20} \mathrm{~m}^{-3}$
C2.1 How many electrons are needed to carry a charge of -6.00 C ?
C2.2 How many electronsflow past a point each second in a 5.0 mA electron beam?
C2.3 Alpha particles have twice the charge of an electron. What is the current caused by a radioactive source which emits 3000 alpha particles per second?
C2.4 An electron gun emits 3.0×10^{21} electrons in two minutes. What is the beam current?
C2.5 Assume all wires have a circular cross section. Calculate the values to complete the gaps in the table:

Diameter $/ \mathrm{mm}$	Cross Sectional Area $/ \mathrm{mm}^{2}$	M aterial	Current $/ \mathrm{A}$	Drift Velocity $/ \mathrm{m} \mathrm{s}^{-1}$
	2.5	Copper	13	(a)
	0.75	Copper	6.0	(b)
1.0		Copper	(c)	0.005
	(d)	Copper	2.0	0.20
(e)		Germanium	2.0	0.20

C2.6 In an experiment, a current of 3.5A is being passed through a copper sulphate solution in a 10 cm cubical container, with the electrical terminals being oppositefaces. This contains equal numbers of Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ ions which have respectively +2 and -2 electron charge units. Assuming that the two ions have equal speed in the solution, and that there are 6.0×10^{26} of each per cubic metre of the solution, work out their mean speed.

C4 Kirchhoff's Laws

If they are not given, fill out the currents and voltages for the question parts below:

	Current/A	Voltage/V
C4.1	(A) (a); (B) (b)	(A); (2.0) (B) (c)
C4.2	(C) (a); (D) (0.20)	(C) (b); (D) (c)
C4.3	(E) (a); (F) (0.20); (G) (d)	(E) (b); (F) (c); (G) (3.0)
C4.4	(H) (a); (I) (b)	(H) (3.0); (I) (c)
C4.5	(J) (a); (K) (3.0); (L) (c); (M) (2.0)	$(\mathrm{J})(9.0) ;(\mathrm{K})(\mathrm{b}) ;(\mathrm{L})(2.0) ;(\mathrm{M})$ (d)

C5 Potential Dividers

C5.1 What is the voltage across the bottom resistor in circuit (A)?
C5.2 In circuit (B):
a) What is the voltage across the bottom resistor?
b) What would the potential of the point between the resistors be if the $2.0 \mathrm{k} \Omega$ resistor were removed, leaving a gap in its place?
c) What would the potential of the point between the resistors be if the $4.0 \mathrm{k} \Omega$ resistor were removed, leaving a gap in its place?
d) What would the potential of the point between the resistors be if the $2.0 \mathrm{k} \Omega$ resistor were removed and a wire was attached in its place to complete the circuit?
e) A voltmeter with resistance $10 \mathrm{k} \Omega$ is used to measure the voltage across the $4.0 \mathrm{k} \Omega$ resistor. What would it read?

C5.3 What is the voltage across the bottom resistor in circuit (C)?
C5.4 What is the voltage across the bottom resistor in circuit (D)?

C5.5 What is the voltage across the bottom resistor in circuit (E)?

C5.6 What is the potential at G, the junction between the two resistors in parallel and the one in series, in circuit (F)?
C5.7 The 8.0Ω resistance in circuit (C) is a loudspeaker (the battery represents the amplifier). The other resistor is replaced with a variable resistor which can take all values between 0Ω and 30Ω, and is used as a volume control. This volume control changes the voltage across the speaker. What is the range of speaker voltages which are possible? (Give the minimum and maximum.)
C5.8 A thermistor has a resistance of 800Ω at a temperature of $16^{\circ} \mathrm{C}$. It is wired in series with a fixed resistor and a 9.0 V battery. A highresistance voltmeter is connected to give a 'temperature' reading.
a) If the voltage reading is to go up when the temperatureincreases, should the vol tmeter be connected in parallel with the thermistor or the fixed resistor?
b) If the voltmeter needs to read 3.0 V when the temperature is $16^{\circ} \mathrm{C}$, what is the resistance of the fixed resistor?

C6 Internal Resistance

C6.1 Give the missing values in the table:

e.m.f N	Internal Resistance $/ \Omega$	Current $/ \mathrm{A}$	Terminal p.d. N	Load Resistance $/ \Omega$
12.0	(a)	20	10.2	
12.0	0.12	72	(b)	
230.0	0.53	(c)	227.5	
6.0	(d)		4.2	4.3
(e)	3.2		21.3	12.0

C6.2 A school high voltage power supply unit has an e.m.f. of 5.0 kV . If short circuited, the current must be no more than 5.0 mA . Calculate the internal resistance of the supply needed in order to achieve this.
C6.3 A small battery is powering a powerful lamp. The terminal p.d. is 11.3 V , and the current flowing is 10.2 A . Assuming that the battery has an internal resistance of 2.4Ω, cal culate the e.m.f. of the battery.
C6.4 A high-resistance voltmeter is connected in parallel with a portable battery used to start cars. Before the car is connected, the meter reads 12.4 V . When the car is connected, and a 64 A current is flowing, the meter reads 11.5 V .
a) What is the e.m.f. of the battery?
b) What is the internal resistance of the battery?

C6.5 You are building a power supply which needs to be able to handle currents of zero to 10 A . A ssume that you build it to have a terminal p.d. of 13.5 V when disconnected, and 10.5 V when supplying 10 A . (a) State the e.m.f. (b) Calculate the internal resistance of the supply.

C2. Charce carriols I

1. $n=\theta / c=\frac{-6.00}{1.19}=3.75 \times 10^{19}$

C4 Kircorloff's cthrs.

* 11 .

$$
\begin{array}{ll}
\text { 1. } & R_{0}=0 \Omega, V=24 \times 8 / 8=24 \mathrm{~V} \\
0 & 0.30 \Omega
\end{array}
$$

(6 Internal resistance
1.

$$
\text { 1. } \begin{aligned}
& V_{T}=\varepsilon-V, V=\varepsilon-V_{T}=12-10.2=1.8 \mathrm{~V} \\
& V=I_{r}, r=V / T=1.8 \\
&=0.090 \Omega=90 \mathrm{~m} n
\end{aligned}
$$

Name \qquad Class \qquad Date \qquad /_I I_

Worked example

The circuit in the diagram below contains four identical new cells, , , and , each of emf 1.5 V and negligible internal resistance.

(a) The resistance of each resistor is 4.0
(i) Calculate the total resistance of the circuit.
(NOTE: two
identical
resistors in
total to half of
individual)

(ii) Calculate the total emf of the combination of cells.

(iii) Calculate the current passing through cell A .
(NOTE: cell A!)

$$
\begin{aligned}
\varepsilon=I(R+\phi), & I_{T}
\end{aligned}=\frac{\varepsilon_{T} / R_{T}}{}=4.5 / 6=0.75 \mathrm{~A} ., ~\left(I_{A}=1 / 2 I_{T}=0.75 / 2=0.375=0.38 \mathrm{~A} .\right.
$$

(iv) Calculate the charge passing through cell A in five minutes, stating an appropriate unit.
(NOTE: cell A!)
(b) Each of the cells can provide the same amount of electrical energy before going flat. State and explain which two cells in this circuit you would expect to go flat first.

Mark scheme

cells C and D will 90 flat first or A and B last longer (1)
current/charge passing through cells C and D (per second) is double/more than that passing through A or $B(1)$
energy given to charge passing through cells per second is double or more than in cells C and $D(1)$ or in terms of power

Circuit questions

Q20.(a) The cell in Figure 1 has an emf of 3.0 V and negligible internal resistance.

Calculate the potential difference across the 8
(2)
(b) Figure 2 shows the same circuit with a voltmeter

The voltmeter reads 1.8 V . Calculate the resistance of the voltmeter.

resistance

(Total 5 marks)

Q26. A battery of negligible internal resistance is connected to lamp P in parallel with lamp Q as shown in Figure 1. The emf of the battery is 12 V .
(a) Lamp P is rated at 12 V 36 W and lamp Q is rated at 12 V 6 W .
(i) Calculate the current in the battery.
(ii) Calculate the resistance of P.
(2)
(iii) Calculate the resistance of Q .
(b) State and explain the effect on the brightness of the lamps in the circuit shown in Figure 1 if the battery has a significant internal resistance.
[6 lines available]
(c) The lamps are now reconnected to the 12 V battery in series as shown in Figure 2.
(i) Explain why the lamps will not be at their normal brightness in this circuit.
[5 lines available]
(2)
(ii) State and explain which of the lamps will be bright

Circuit questions 2

Q31. \mathbf{X} and \mathbf{Y} are two lamps. \mathbf{X} is rated at 12 V 36 W and \mathbf{Y} at 4.5 V 2.0 W .
(a) Calculate the current in each lamp when it is operated at its correct working voltage.

$$
\begin{aligned}
& \text { X ... A } \\
& \text { Y ... A }
\end{aligned}
$$

(b) The two lamps are connected in the circuit shown in the figure below. The battery has an emf of 24 V and negligible internal resistance. The resistors, R_{1} and R_{2} are chosen so that the lamps are operating at their correct working voltage.

(i) Calculate the pd across R_{1}.
\qquad
(ii) Calculate the current in R_{1}.
\qquad
(iii) Calculate the resistance of R_{1}.
(iv) Calculate the pd across R_{2}.
answer .. V
ans
(v) Calculate the resistance of R_{2}.
(c) The filament of the lamp in \mathbf{X} breaks and the lamp no longer conducts. It is observed that the voltmeter reading decreases and lamp \mathbf{Y} glows more brightly.
(i) Explain without calculation why the voltmeter reading decreases. [3 lines available]
(ii) Explain without calculation why the lamp \mathbf{Y} glows more brightly.
[3 lines available]

Q32. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below.
(a) The current in the battery is 1.0 A .
(i) Calculate the pd between points \mathbf{A} and \mathbf{B} in the circuit.
answer =
V
(ii) Calculate the internal resistance, r.
(iii) Calculate the total energy transformed by the battery in 5.0 minutes.
\qquad
J
(iv) Calculate the percentage of the energy calculated in part (iii) that is dissipated in the battery in 5.0 minutes.
answer = \%
(b) State and explain

Circuit questions ChQ

Q1.Figure 1 shows a circuit including a thermistor \mathbf{T} in series with a variable resistor \mathbf{R}. The battery has negligible internal resistance.

Figure 1

The resistance temperature ($R \quad$) characteristic for \mathbf{T} is shown in Figure 2.
Figure 2

(a) The resistor and thermistor in Figure 1 make up a potential divider.

Explain what is meant by a potential divider.
[3 lines available]
(b) State and explain what happens to the voltmeter reading when the resistance of \mathbf{R} is increased while the temperature is kept constant.
[6 lines available]
(c) State and explain what happens to the ammeter reading when the temperature of the thermistor increases.
[4 lines available]
(d) The battery has an emf of 12.0 V . At a temperature of $0{ }^{\circ} \mathrm{C}$ the resistance of the thermistor is 2.5×10^{3}

The voltmeter is replaced by an alarm that sounds when the voltage across it exceeds 3.0 V .

Page 5

Calculate the resistance of R that would cause the alarm to sound when the temperature of the thermistor is lowered to $0^{\circ} \mathrm{C}$.
(e) State one change that you would make to the circuit so that instead of the alarm coming on when the temperature falls, it comes on when the temperature rises above a certain value.
[3 lines available]

Q9.The cells in the circuit shown in the figure below have zero internal resistance. Currents are in the directions shown by the arrows.

R_{1}
(a) Write down the relationship between currents I_{1}, I_{2} and I_{3}.
\qquad
(b) $\quad R_{1}$

State the potential difference across R_{3}.
\qquad
(c) Determine the current I_{2}.
current = A
(d) State and explain what happens to the potential difference across R_{2} as the resistance of R_{1} is gradually increased from zero.

Circuit questions: soutions

M20.(a) potential divider formula used or current found to be 0.25 A

allow 1 s.f.
1.0 V (with working) gains 1 mark
(b)

M26.

$$
\begin{aligned}
& \text { (a) (i) (use of } P=V I) \\
& I=36 / 12+6 / 12=3.5(\mathrm{~A})
\end{aligned}
$$

(ii) (use of $V=I R$)
(iii) $R=12 / 0.50=24$
(b) terminal pd/voltage across lamp is now less OR current is less

Page 8

Example calculation solutions:

(b) cellian :

Circuit questions

Q2. \mathbf{X} and \mathbf{Y} are two lamps. \mathbf{X} is rated at 12 V 36 W and \mathbf{Y} at 4.5 V 2.0 W.
(a) Calculate the current in each lamp when it is operated at its correct working voltage.
\qquad
A
Y ... A
(b) The two lamps are connected in the circuit shown in the figure below. The battery has an emf of 24 V and negligible internal resistance. The resistors, R_{1} and R_{2} are chosen so that the lamps are operating at their correct working voltage.
(i) Calculate the pd across R_{1}.
(ii) Calculate the current in R_{1}.
(iii) Calculate the resistance of R_{1}.
(iv) Calculate the pd across R_{2}.
(v) Calculate the resistance of R_{2}.
(c) The filament of the lamp in \mathbf{X} breaks and the lamp no longer conducts. It is observed that the voltmeter reading decreases and lamp \mathbf{Y} glows more brightly.
(i) Explain without calculation why the voltmeter reading decreases. [3 lines]
(ii) Explain without calculation why the lamp \mathbf{Y} glows more brightly. [3 lines]

Q17. (a) X and Y are two lamps. X is rated at $12 \mathrm{~V}, 24 \mathrm{~W}$ and Y at $6.0 \mathrm{~V}, 18 \mathrm{~W}$. Calculate the current through each lamp when it operates at its rated voltage.
X:
Y: \qquad
\qquad
(b) The two lamps are connected in the circuit shown. The battery has an emf of 27 V and negligible internal resistance. The resistors R_{1} and R_{2} are chosen so that the lamps are operating at their rated voltage.
(i) What is the reading on the voltmeter?
(ii)

Circuit questions: solutions

M2. (a) (use of $P=\mathrm{V} /$)
$I=36 / 12=3.0 \mathrm{~A}$
$I=2.0 / 4.5=0.44 \mathrm{~A}$
(b) (i)
$=3.44 \mathrm{~A}$
(iii) $\mathrm{R}_{1} \quad 1$
(iv) 1
(v) R_{2}
(c) (i) (circuit) resistance increases
current is lower (reducing voltmeter reading)
or correct potential divider argument
2
(ii) pd across Y or current through Y increases
hence power/rate of energy dissipation greater or temperature of lamp increases

M17. (a) (i) for $\mathrm{X}:(P=V I$ gives) $24=12 I$ and $I=2 \mathrm{~A}$ (1) for $Y \quad 18=6 /$ and $I=3 \mathrm{~A}$ (1)
(b) (5/ang (en®B q. 00000887059.25842 reW*n®//\& 11 Tf1 00164.275 a

